Extensions 1→N→G→Q→1 with N=C7xC14 and Q=C22

Direct product G=NxQ with N=C7xC14 and Q=C22
dρLabelID
C2xC142392C2xC14^2392,44

Semidirect products G=N:Q with N=C7xC14 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C7xC14):C22 = C2xD72φ: C22/C1C22 ⊆ Aut C7xC14284+(C7xC14):C2^2392,41
(C7xC14):2C22 = D7xC2xC14φ: C22/C2C2 ⊆ Aut C7xC1456(C7xC14):2C2^2392,42
(C7xC14):3C22 = C22xC7:D7φ: C22/C2C2 ⊆ Aut C7xC14196(C7xC14):3C2^2392,43

Non-split extensions G=N.Q with N=C7xC14 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C7xC14).1C22 = D7xDic7φ: C22/C1C22 ⊆ Aut C7xC14564-(C7xC14).1C2^2392,18
(C7xC14).2C22 = Dic7:2D7φ: C22/C1C22 ⊆ Aut C7xC14284+(C7xC14).2C2^2392,19
(C7xC14).3C22 = C72:2D4φ: C22/C1C22 ⊆ Aut C7xC14564-(C7xC14).3C2^2392,20
(C7xC14).4C22 = C7:D28φ: C22/C1C22 ⊆ Aut C7xC14284+(C7xC14).4C2^2392,21
(C7xC14).5C22 = C72:2Q8φ: C22/C1C22 ⊆ Aut C7xC14564-(C7xC14).5C2^2392,22
(C7xC14).6C22 = C7xDic14φ: C22/C2C2 ⊆ Aut C7xC14562(C7xC14).6C2^2392,23
(C7xC14).7C22 = D7xC28φ: C22/C2C2 ⊆ Aut C7xC14562(C7xC14).7C2^2392,24
(C7xC14).8C22 = C7xD28φ: C22/C2C2 ⊆ Aut C7xC14562(C7xC14).8C2^2392,25
(C7xC14).9C22 = C14xDic7φ: C22/C2C2 ⊆ Aut C7xC1456(C7xC14).9C2^2392,26
(C7xC14).10C22 = C7xC7:D4φ: C22/C2C2 ⊆ Aut C7xC14282(C7xC14).10C2^2392,27
(C7xC14).11C22 = C72:4Q8φ: C22/C2C2 ⊆ Aut C7xC14392(C7xC14).11C2^2392,28
(C7xC14).12C22 = C4xC7:D7φ: C22/C2C2 ⊆ Aut C7xC14196(C7xC14).12C2^2392,29
(C7xC14).13C22 = C28:D7φ: C22/C2C2 ⊆ Aut C7xC14196(C7xC14).13C2^2392,30
(C7xC14).14C22 = C2xC7:Dic7φ: C22/C2C2 ⊆ Aut C7xC14392(C7xC14).14C2^2392,31
(C7xC14).15C22 = C72:7D4φ: C22/C2C2 ⊆ Aut C7xC14196(C7xC14).15C2^2392,32
(C7xC14).16C22 = D4xC72central extension (φ=1)196(C7xC14).16C2^2392,34
(C7xC14).17C22 = Q8xC72central extension (φ=1)392(C7xC14).17C2^2392,35

׿
x
:
Z
F
o
wr
Q
<